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Abstract

In this paper, an inverse triple effect domination is introduced for any finite graph G = (V,E) simple
and undirected without isolated vertices. A subset D−1 of V −D is an inverse triple effect dominating
set if every v ∈ D−1 dominates exactly three vertices of V −D−1. The inverse triple effect domination
number γ−1

te (G) is the minimum cardinality over all inverse triple effect dominating sets in G. Some
results and properties on γ−1

te (G) are given and proved. Under any conditions the graph satisfies
γte(G) + γ−1

te (G) = n is studied. Lower and upper bounds for the size of a graph that has γ−1
te (G) are

putted in two cases when D−1 = V −D and when D−1 6= V −D. Which properties of a vertex to be
belongs to D−1 or out of it are discussed. Then, γ−1

te (G) is evaluated and proved for several graphs.
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1. Introduction

Domination is one of essential branches in graph theory. The study of domination models has wide
area in researches because of its important and applications in large fields of sciences and life. For
basic definitions and relations in graph theory see [14, 20, 21]. For a detailed survey of domination,
one can see [15, 16, 17]. There are different papers studied the inverse domination such as [1-7].
Where the papers of different types of domination are too many, see [8, 9, 11, 12, 13, 18, 19, 22, 23].
In previous paper [10] we study a new model of domination called triple effect domination . Such
that every vertex in the triple effect dominating set D dominates exactly three vertices. We put
several theorems and properties of this model. Here, we study the inverse triple effect domination
and discuss its bounds and properties, then we applied it on some graphs.
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2. Basic Properties

In this section, the definition of inverse triple effect domination is introduced and its properties
are proved.

Definition 2.1. Let D ⊆ V (G) be a minimum triple effect dominating set in G. If V −D contains
triple effect dominating set, then it is called an inverse triple effect dominating set of G with respect
to D and denoted by D−1.

Definition 2.2. A subset D−1 ⊆ V −D is said minimal inverse triple effect dominating set if there
is no proper triple effect dominating subset in it. For example see Fig. 1.

Figure 1: Minimum inverse triple effect dominating set.

Definition 2.3. An inverse triple effect dominating set is said minimum if its cardinality is smallest
over all inverse triple effect dominating sets in G.

Definition 2.4. The inverse triple effect domination number denoted by γ−1
te (G) is the cardinality

of the minimum inverse triple effect dominating set. Such set is referred as γ−1
te −set.

Observation 2.5. Let G be a graph having an inverse triple effect dominating set. Then:

1. γ−1
te (G) ≥ 1

2. γ−1
te (G) ≥ γte(G).

Remark 2.6. For any graph G having order n and triple effect dominating set, if γte(G) > n
2
, then

G has no inverse triple effect domination.

Proposition 2.7. For any graph G with a minimum triple effect dominating set D, if v ∈ V −D is
dominated by more than three vertices from D, then v /∈ D−1.

Proof . Let v ∈ V −D be dominated by four vertices u1, u2, u3 and u4 from D. If v ∈ D−1, then it
will dominate u1, u2, u3 and u4, and this contradiction. Thus, v /∈ D−1. �

Observation 2.8. For any minimum triple effect dominating set D in G. If every v ∈ V − D is
dominated by four vertices from D, then G has no inverse triple effect domination.

Proposition 2.9. For any minimum triple effect dominating set D in a graph G, if v ∈ V− D is
dominated by four or more vertices in D and it is an isolated vertex in G[V − D], then G has no
inverse triple effect domination.
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Proof . Since v is dominated by four vertices u1, u2, u3 and u4, then v /∈ D−1 from proposition (2.7).
If G has D−1, the four vertices u1, u2, u3, u4 /∈ D−1 and since v is not adjacent to any u in V − D,
then v is not dominated by D−1. Therefore, G has no inverse triple effect domination. �

Proposition 2.10. For any graph G and any minimum triple effect dominating set D, if G[V −D]
is a null graph and there is a vertex v ∈ V −D that is dominated by four vertices from D, then G
without inverse triple effect dominating set.

Proof . Similar to the proof of Proposition(2.9). �

Proposition 2.11. For any graph G and any minimum triple effect dominating set D, if G[V −D]
is a null graph and there is a vertex v ∈ V −D that is dominated by one or two vertices in D, then
G has no inverse triple effect dominating set.

Proof . If G has an inverse triple effect dominating set, then D−1 = V −D. Then, v ∈ D−1 Which
will dominates less than three vertices and this contradict our definition. Hence, G has no inverse
triple effect dominating set. �

Proposition 2.12. For any graph G and any minimum inverse triple effect dominating set D−1, if
v is an isolated vertex in G[V −D] and it is dominated by three vertices, then v ∈ D−1.

Proof . If v /∈ D−1, then @u ∈ D−1 dominates v which is contradict the fact D−1 is inverse triple
effect dominating set. �

Proposition 2.13. For any graph G and any minimum triple effect dominating set D, if ∀v ∈
V −D, v is dominated by three vertices in D, then G has an inverse triple effect dominating set.

Proof . Since every v ∈ V − D is dominated by exactly three vertices from D, then V − D is
dominates all vertices of D. Hence, D−1 = V −D. �

Theorem 2.14. For any graph G with triple effect domination number γte(G) and an inverse triple
effect domination number γ−1

te (G). Then, γte(G)+γ−1
te (G) = n if one of the following conditions holds:

1. γte(G) = n
2
.

2. G[V −D] is a null graph and every v in V −D is dominated by exactly three vertices from D.

Proof .
1. Since γ−1

te (G) ≥ γte(G) and γte(G) = n
2
, then γ−1

te (G) = γte(G) = n
2
. Hence, D−1 = V −D.

2. By Proposition 2.12, v ∈ D−1 for all v ∈ V −D, since G has an inverse triple effect dominating
set, then every vertex in V −D is dominates exactly three vertices from D and has no neighborhood
in V −D. �

Theorem 2.15. For any graph G(n,m) with an inverse triple effect domination number γ−1
te (G), if

D−1 = V −D, then

3γ−1
te (G) ≤ m ≤

(
n
2

)
− (n− 3)γ−1

te (G) +
(
γ−1
te (G)

)2
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Proof . Since D−1 = V −D, then V = D ∪D−1, then there are two cases :
Case1: Let G[D] and G [D−1] are two null subgraphs, let G has a minimum number of edges, there
exists three edges between every vertex in D−1 to D.Then, the number of edges between D and D−1

equals 3 |D−1| = 3γ−1
ar (G). Thus, m ≥ 3γ−1

ar (G).
Case 2: Suppose that G[D] and G [D−1] are two complete subgraphs.

Let m1 =
|D−1||D−1−1|

2
and m2 =

|V−D−1||V−D−1−1|
2

represent the number of edges inside G[D] and
G [D−1] respectively. Where the number of edges between D and D−1 equals m3 = 3γ−1

te (G). Thus,
the number of edges in graph G equals:

m = m1 +m2 +m3 ≤
(
n
2

)
− (n− 3)γ−1

te (G) +
(
γ−1
te (G)

)2
. �

Theorem 2.16. For any graph G(n,m) with an inverse triple effect domination number γ−1
te (G) and

D−1 is a γ−1
te -set. If D−1 6= V −D, then :

n− γte + 2γ−1
te ≤ m ≤

(
γte
2

)
+

(
γ−1
te

2

)
+

(
n− γte − γ−1

te

2

)
+ 3γ−1

te + 2γte

Proof . Since D−1 6= V −D, then let V −D = D−1 ∪W where D−1 ∩W = ∅, we get two cases:
Case 1: Suppose that G[D], G [D−1] and G[W ] are null graphs. Since D−1 is triple effect dominating
set, then there are three edges from every vertex in D−1 to D ∪W say (m1), then m1 = 3γ−1

te (G).
Therefore, there are one edge at least from every vertex in W to D ( say m2).
Then, m2 = |W | = n − |D| − |D−1| = n − γte − γ−1

te , where G = D ∪ D−1 ∪ W . Hence, m ≥
3γ−1

te + n− γte − γ−1
te = n− γte + 2γ−1

te . Then, m ≥ n− γte + 2γ−1
te .

Case 2: Suppose that G[D], G [D−1] and G[W ] are complete subgraphs. Let m1,m2,m3 be the

number of edges of G[D], G [D−1] and G[W ] respectively which are equal to

(
γte
2

)
,

(
γ−1
te

2

)
and(

n− γte − γ−1
te

2

)
. As case one, the number of edges between D−1 and D∪W equals m4 = 3γ−1

te (G).

So that, there is at most 2|D| edges from D to W where, there are two edges from every vertex
in D to W (if there exists v ∈ D, v dominates three vertices in W , then v is not dominated by D−1,
since it has no neighborhood in D−1 ). Then, the number of edges between set D and set W say m5

equals to 2|D| = 2γte. Hence, m = m1 +m2 +m3+ m4 +m5 which get the required identity. �

Theorem 2.17. For any graph G(n,m) and any minimum inverse triple effect dominating set D−1.
If D−1 6= V −D such that H = V −D −D−1, then:

1. There is no vertex v in D or D−1 such that |N(v) ∩H| = 3.

2. For any v ∈ D, if v has one neighborhood in H, then it has another two neighborhoods in D−1.

3. For any u ∈ D−1, if u has one neighborhood in H, then it has another two neighborhoods in D.

4. |H| ≤ dn
2
e.

Proof .
1. Let v ∈ D, then v dominates exactly three vertices from H. Therefore, v has no neighborhood
in D−1 and v is not dominated by D−1. Which is a contradiction since D−1 is a γ−1

te −set. Hence,
N(v) ∩H 6= 3. Similarly we can prove this case if v ∈ D−1.
2. Since every vertex in D dominates three vertices in G, and it dominates one vertex in H, then it
dominates two vertices in D−1.
3. Similar to proof 2 above.
4. Since |D| ≥ dn

4
e and |D−1| ≥ dn

4
e, then |H| ≤ dn

2
e. �



An Inverse Triple Effect Domination in Graphs 12 (2021) No. 2, 913-919 917

3. Applications in Some Graphs

In this section, we study the triple effect domination on some graphs and evaluate their γ−1
te − set

and γ−1
te (G). We show that there are some graphs haven’t this type of domination. While, some of

them will have.

Observation 3.1. Any graph has no triple effect domination, then it has no inverse triple effect
domination such that path graph Pn, cycle graph Cn, helm graph Hn and big helm graph Hn.

Proposition 3.2. The complete graph Kn (n ≥ 4) has an inverse triple effect domination if and
only if n = 4, 5, 6. Furthermore, γ−1

te (Kn) = γte (Kn) = n− 3.

Proof . It is clear when n = 4, 5, 6, then Kn has an inverse triple effect domination number equals
to n− 3, by similar technique of [10, Proposition 3.2]. For example see Fig 2 .
But if n ≥ 7, then Kn has no inverse triple effect domination according to Remark 2.6, since
γte (Kn) > n

2
. �

Figure 2: Inverse triple effect dominating set in k5.

Theorem 3.3. For any integer n ≥ 3, the wheel graph Wn has an inverse triple effect domination,
such that γ−1

te (Wn) = γte (Wn) =
⌈
n
3

⌉
.

Proof . let us table the vertices of Wn as: v1, v2, . . . , vn+1. To choose a set D−1, with respect to D
that chosen in [10, Theorem 3.4]. The following two cases are obtained according to n :
Case 1. If n ≡ 0, 2(mod3), let D−1 contains one vertex from every three consecutive vertices of
Cn, where D−1 =

{
v3i−1, i = 1, 2, . . . ,

⌈
n
3

⌉}
is dominating set. Every vertex in D dominates three

vertices, vn+1 and another two vertices adjacent with it, except when n ≡ 2(mod3), there are two
vertices v2 and vn of D−1 dominate v1, vn+1 and another vertex. Therefore, D−1 is γ−1

te − set and
γ−1
te = |D−1| =

⌈
n
3

⌉
.

Case 2 . If n ≡ 1(mod3), then we can take D−1 =
{
v3i−1, i = 1, 2, . . . ,

⌈
n
3

⌉
− 1

}
∪ {vn}.

Hence, D−1 is a γ−1
te − set and γ−1

te = |D−1| =
⌈
n
3

⌉
. For example see Fig 3.

Now, to prove that D−1 is minimum, let M is an inverse triple effect dominating set in G,such
that |M | < |D−1|, then there exist at least one vertex in V − D don’t dominated by any vertex of
M . Hence, M is not inverse triple effect dominating set and D−1 is minimum inverse triple effect
dominating set. �
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Figure 3: Inverse triple effect dominating set in Wn

Theorem 3.4. For a complete bipartite graph Kn,m, we have γ−1
te (Kn,m) =

{
3 if m = n = 3

n+m− 6 if n ∧m > 3

Proof . Let V1 and V2 be the two sets of Kn,m vertices, where |V1| = n and |V2| = m.
Case 1. It is clear D−1 = V1 or D−1 = V2.
Case 2. If n,m > 3, then D−1 must be contains n−3 vertices of V1 and m−3 vertices of V2 where all
the n− 3 vertices will dominate the three vertices of V2. Also, all m− 3 vertices of V2 will dominate
the three vertices of V1. Hence, γ−1

te (Kn,m) = n+ m− 6. For example see Fig 4. �

Figure 4: Inverse triple effect dominating set in Kn,m

Proposition 3.5. The tadpole graph Tm,n has no inverse triple effect domination.

Proof . Since every vertex v ∈ V −D can’t dominates three vertices in G. �

Proposition 3.6. Let G be the barbell graph Bn,n(n ≥ 4), then : γ−1
te (Bn,n) = 2n− 6 if and only if

n = 4, 5, 6.

Proof . Since Bn,n have two copies of Kn graph joined by a bridge, and since γ−1
te (Kn) = n − 3 if

and only if n = 4, 5, 6 according to Proposition 3.2. Then, D−1 of Bn,n contains all vertices of D−1

in the two copies of Kn, where the bridge must be lies in two vertices belong to D−1 or to V −D−1

together. For example see Fig 5 . �

Figure 5: Inverse triple effect dominating set in B5,5
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4. Conclusion

In this paper, we introduce the inverse type of the triple effect domination model. Several bounds
and properties are proved. So we apply this type of domination on more graphs to evaluate their
inverse triple effect domination numbers.
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