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Abstract. In this paper, we first construct the Cauchy q-shift operator T (a, b; Dxy) and the
Cauchy q-difference operator L(a, b; θxy). We then apply these operators in order to represent
and investigate some new families of q-polynomials which are defined in this paper. We derive
some q-identities such as generating functions, symmetry properties and Rogers-type formulas
for these q-polynomials. We also give an application for the q-exponential operator R(bDq).
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1. INTRODUCTION AND NOTATION

We begin our investigation by reviewing some common notation and terminology for basic (or q-)
hypergeometric series in (for example) [15, 22] (see also [23, 24]). We assume that the parameter
q is a fixed nonzero real or complex number and |q| < 1. The q-shifted factorial is defined for any
real or complex parameter a by

(λ; q)0 = 1 and (λ; q)n = (1− λq)(1− λq2) · · · (1− λqn−1) (n ∈ N) (1.1)

and

(λ; q)∞ =
∞∏

k=0

(1− λqk),

where N denotes the set of positive integers,

(λ; q)n =
(λ; q)∞

(λqn; q)∞
and (λ; q)n+k = (λ; q)k (λqk; q)n. (1.2)

We also adopt the following notation for the products of several q-shifted factorials:

(λ1, λ2, . . . , λm; q)n = (λ1; q)n(λ2; q)n · · · (λm; q)n

and
(λ1, λ2, . . . , λm; q)∞ = (λ1; q)∞(λ2; q)∞ · · · (λm; q)∞.

The q-binomial coefficient is defined by
[
n

k

]
=

(q; q)n

(q; q)k(q; q)n−k
=

[
n

n− k

]
(0 5 k 5 n).

The basic (or q-) hypergeometric series rΦs is defined by (see, for example, [22, p. 347 et seq.]

rΦs

[
a1, . . . , ar;

b1, . . . , bs;
q, x

]
=

∞∑
n=0

(a1, . . . , ar; q)n

(q, b1, . . . , bs; q)n

[
(−1)nq(

n
2)

]1+s−r

xn, (1.3)

124
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provided that the series converges.
Basic (or q-) hypergeometric series and various associated families of q-polynomials are useful in

a wide variety of fields including, for example, the theory of partitions, number theory, combina-
torial analysis, finite vector spaces, Lie theory, particle physics, non-linear electric circuit theory,
mechanical engineering, theory of heat conduction, quantum mechanics, cosmology, and statistics
(see [22, pp. 346–351] and the references cited therein).

Recently, by comparing two known q-series identities, Abdlhusein [1] derived the following im-
portant q-hypergeometric transformation between 1Φ1 and 2Φ1 [see also Eq. (2.7) below]:

1Φ1

[
xt;

yt;
q, ys

]
=

(xt, ys; q)∞
(yt; q)∞

2Φ1

[
y/x, 0;

ys;
q, xt

]
(|xt| < 1). (1.4)

An analogous q-hypergeometric transformation between 1Φ1 and 2Φ1 can be derived by applying
the following known results (see, for example, [22, p. 348]):

2Φ1

[
a, b;

c;
q, z

]
=

(c/b; q)∞(bz; q)∞
(c; q)∞(z; q)∞

2Φ1

[
abz/c, b;

bz;
q, c/b

]
(1.5)

and

2Φ1

[
a, b;

c;
q, z

]
=

(az; q)∞
(z; q)∞

2Φ2

[
a, c/b;

c, az;
q, bz

]
. (1.6)

Indeed, if we first apply (1.5) to the left-hand side of (1.6) and then set a = 0 in the resulting
equation, we readily find that

1Φ1

[
c/b ;

c ;
q, bz

]
=

(c/b; q)∞(bz; q)∞
(c; q)∞

2Φ1

[
b, 0;

bz;
q, bz

]
,

which, upon first setting c = abz and then letting a = x, b = y and z = t, yields the following
analogue of the q-hypergeometric transformation (1.4):

1Φ1

[
xt;

xyt;
q, yt

]
=

(xt; q)∞(yt; q)∞
(xyt; q)∞

2Φ1

[
y, 0;

yt;
q, yt

]
. (1.7)

The Cauchy identity is given by

∞∑

k=0

(a; q)k

(q; q)k
xk =

(ax; q)∞
(x; q)∞

(|x| < 1). (1.8)

Putting a = 0, (1.8) becomes Euler’s identity:

∞∑

k=0

xk

(q; q)k
=

1
(x; q)∞

(|x| < 1). (1.9)

The inverse of Euler’s identity (1.9) is given by

∞∑

k=0

(−1)kq(
k
2) xk

(q; q)k
= (x; q)∞. (1.10)
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The Cauchy polynomials pn(x, y) are defined by

pn(x, y) = (x− y)(x− qy) · · · (x− qn−1y) = (y/x; q)n xn; (1.11)

these polynomials satisfy the following generating function [9]:

∞∑
n=0

pn(x, y)
tn

(q; q)n
=

(yt; q)∞
(xt; q)∞

(|xt| < 1), (1.12)

where (see [9])

pn(x, y) = (−1)nq(
n
2)pn(y, q1−nx). (1.13)

The generalized Rogers–Szegő polynomials rn(x, y) are defined as follows (see [14, 17]):

rn(x, y) =
n∑

k=0

[
n

k

]
xk yn−k = T (yDq){xn}, (1.14)

where the q-exponential operator T (λDq) is defined by (see [11])

T (λDq) :=
∞∑

k=0

(λDq)k

(q; q)k)
. (1.15)

The bivariate Rogers–Szegő polynomials hn(x, y|q) are defined by (see [18])

hn(x, y|q) =
n∑

k=0

[
n

k

]
(y; q)k xn−k. (1.16)

The generating function and Rogers-type formula for the bivariate Rogers–Szegő polynomials
hn(x, y|q) are given as follows (see [1, 9, 18]):

∞∑
n=0

hn(x, y|q) tn

(q; q)n
=

(yt; q)∞
(t, xt; q)∞

(max{|t|, |xt|} < 1) (1.17)

and
∞∑

m=0

∞∑
n=0

hn+m(x, y|q) sm

(q; q)m

tn

(q; q)n
=

(ys; q)∞
(s, xs, xt; q)∞

2Φ1

(
y, xs;

ys;
q, t

)
(1.18)

(max{|s|, |t|, |xs|, |xt|} < 1).

The main object of this paper is first to construct the Cauchy q-shift operator T (a, b; Dxy) and
the Cauchy q-difference operator L(a, b; θxy). These operators are then applied in order to represent
and investigate some new families of q-polynomials which are defined in this paper. We derive some
q-identities such as generating functions, symmetry properties and Rogers-type formulas for these
q-polynomials. We also give an application for the q-exponential operator R(bDq). Some closely-
related earlier works on the general subject of our investigation include (for example) [4–6, 20, 21].
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2. AN APPLICATION OF THE q-EXPONENTIAL OPERATOR R(bDq)

In this section, we introduce a new q-polynomial Vn(x, y, b|q) and represent it by means of the
q-exponential operator R(bDq) in order to derive its generating function, symmetry property and
Rogers-type formula, where the operator R(bDq) acts on the bivariate Rogers–Szegő polynomials
hn(x, y|q) defined by (1.16).

Saad and Sukhi [19] introduced the following q-exponential operator:

R(bDq) =
∞∑

k=0

(−1)kq(
k
2) (bDq)k

(q; q)k
(2.1)

together with its following operational rules by assuming that the operator acts on the parameter a:

R(bDq) {an} = pn(a, b), (2.2)

R(bDq)
{

1
(at; q)∞

}
=

(bt; q)∞
(at; q)∞

, (2.3)

R(bDq)
{

1
(at, as; q)∞

}
=

(bs; q)∞
(at, as; q)∞

1Φ1

[
as;

bs;
q, bt

]
, (2.4)

R(bDq)
{

(av; q)∞
(at, as; q)∞

}
=

(bs; q)∞
(as; q)∞

2Φ1

[
v/t, b/a;

bs;
q, at

]
. (2.5)

Setting v = 0 in (2.5), we get the following new operational rôle for the q-exponential operator:

R(bDq)
{

1
(at, as; q)∞

}
=

(bs; q)∞
(as; q)∞

2Φ1

[
b/a, 0;

bs;
q, at

]
. (2.6)

By comparing our identity (2.6) and the identity (2.4), we get the following transformation:

1Φ1

[
as;

bs;
q, bt

]
= (at; q)∞ 2Φ1

[
b/a, 0;

bs;
q, at

]
, (2.7)

which, in view of the symmetry in (2.4), is essentially the same as the q-hypergeometric transfor-
mation (1.4).

We now define a new family of q-polynomials as follows.

Definition 1. Let the q-shifted factorial and the Cauchy polynomials be defined as above. Then
we define the q-polynomials Vn(x, y, b|q) by

Vn(x, y, b|q) =
n∑

k=0

[
n

k

]
(y; q)n−k pk(x, b). (2.8)

We notice that, when b = 0, the definition (2.8) reduces to the definition (1.16) of the bivariate
Rogers–Szegő polynomials hn(x, y|q).

The q-polynomials Vn(x, y, b|q) defined by (2.8) can be represented by using the q-exponential
operator R(bDq) as in Theorem 1 below.

Theorem 1. Suppose that the operator R(bDq) acts on the variable x, Then
R(bDq){hn(x, y|q)} = Vn(x, y, b|q). (2.9)

Proof. We observe that
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R(bDq) {hn(x, y|q)} = R(bDq)

{
n∑

k=0

[
n

k

]
(y; q)kxn−k

}
=

n∑

k=0

[
n

k

]
(y; q)k R(bDq)

{
xn−k

}

=
n∑

k=0

[
n

k

]
(y; q)k pn−k(x, b) =

n∑

k=0

[
n

k

]
(y; q)n−k pk(x, b) = Vn(x, y, b|q),

which completes the proof of Theorem 1.

The generating function of the polynomials Vn(x, y, b|q) will be derived by using our represen-
tation (2.9) and the identity (2.3) of the q-exponential operator R(bDq) as follows.

Theorem 2. [Generating Function for Vn(x, y, b|q)]. The q-polynomials Vn(x, y, b|q) are gener-
ated by

∞∑
n=0

Vn(x, y, b|q) tn

(q; q)n
=

(yt, bt; q)∞
(t, xt; q)∞

(max{|t|, |xt|} < 1). (2.10)

Proof. It is easily seen that∞∑
n=0

Vn(x, y, b|q) tn

(q; q)n
=

∞∑
n=0

Rx(bDq){hn(x, y|q)} tn

(q; q)n
= Rx(bDq)

{ ∞∑
n=0

hn(x, y|q) tn

(q; q)n

}

= Rx(bDq)
{

(yt; q)∞
(t, xt; q)∞

}
=

(yt; q)∞
(t; q)∞

Rx(bDq)
{

1
(xt; q)∞

}
=

(yt, bt; q)∞
(t, xt; q)∞

,

which proves the generating function (2.10) asserted by Theorem 2.

Theorem 3. [Symmetry Property for Vn(x, y, b|q)]. The following identity holds:
Vn(x, y, b|q) = Vn(x, b, y|q). (2.11)

Proof. From the generating function (2.10), we have
∞∑

n=0

Vn(x, y, b|q) tn

(q; q)n
=

(yt, bt; q)∞
(t, xt; q)∞

=
(bt; q)∞
(t; q)∞

(yt; q)∞
(xt; q)∞

=
∞∑

n=0

(b; q)n tn

(q; q)n

∞∑

k=0

(y/x; q)k (xt)k

(q; q)k
.

Now, setting n 7→ n − k and comparing the coefficients of tn on both sides, we get the required
identity.

Theorem 4. [Rogers-Type Formula for Vn(x, y, b|q)]. The following double-series identity holds:
∞∑

m=0

∞∑
n=0

Vm+n(x, y, b|q) sm

(q; q)m

tn

(q; q)n
=

(ys, bt; q)∞
(s, xt; q)∞

∞∑

k=0

(y; q)k tk

(ys, q; q)k
2Φ1

[
b/x, 0;

bt;
q, xsqk

]
(2.12)

(max{|s|, |t|, |xs|, |xt|} < 1).

Proof. We observe that
∞∑

m=0

∞∑
n=0

Vm+n(x, y, b|q) sm

(q; q)m

tn

(q; q)n
=

∞∑
n=0

∞∑
m=0

Rx(bDq){hm+n(x, y|q)} sm

(q; q)m

tn

(q; q)n

= Rx(bDq)

{ ∞∑
n=0

∞∑
m=0

hm+n(x, y|q) sm

(q; q)m

tn

(q; q)n

}
=Rx(bDq)

{
(ys; q)∞

(s, xs, xt; q)∞
2Φ1

(
y, xs;

ys;
q, t

)}

= Rx(bDq)

{
(ys; q)∞

(s, xs, xt; q)∞

∞∑

k=0

(y, xs; q)k tk

(ys, q; q)k

}
=

(ys; q)∞
(s; q)∞

∞∑

k=0

(y; q)k tk

(ys, q; q)k
Rx(bDq)

{
1

(xt, xsqk; q)∞

}

=
(ys; q)∞
(s; q)∞

∞∑

k=0

(y; q)k tk

(ys, q; q)k

(bt; q)∞
(xt; q)∞

2Φ1

[
b/x, 0;

bt;
q, xsqk

]

=
(ys, bt; q)∞
(s, xt; q)∞

∞∑

k=0

(y; q)k tk

(ys, q; q)k
2Φ1

[
b/x, 0;

bt;
q, xsqk

]
,

which evidently completes the proof of Theorem 4.
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3. THE CAUCHY q-SHIFT OPERATOR T (a, b; Dxy)

In this section, we introduce the Cauchy q-shift operator T (a, b;Dxy). Then, by means of the
operator T (a, b; Dxy), we define new q-polynomials Mn(a, b, x, y|q) and represent them in terms
of the Cauchy q-shift operator in order to derive their generating function. We also derive an
identity for the q-exponential operator T (bDq) and use it to give the Rogers-type formula for the
q-polynomials Mn(a, b, x, y|q).

Chen et al. [9] introduced the homogeneous q-difference operator Dxy on functions in the two
variables x and y, which turns out to be suitable for dealing with the bivariate Rogers–Szegő
polynomials hn(x, y|q) defined by (1.16) as exhibited below:

Dxy {f(x, y)} =
f(x, q−1y)− f(qx, y)

x− q−1y
, (3.1)

where (see [9])

Dk
xy {pn(x, y)} =

(q; q)n

(q; q)n−k
pn−k(x, y) and Dk

xy

{
(yt; q)∞
(xt; q)∞

}
= tk

(yt; q)∞
(xt; q)∞

. (3.2)

Using the q-difference operator Dxy, we define the Cauchy q-shift operator T (a, b; Dxy) as follows.

Definition 2. The Cauchy q-shift operator T (a, b;Dxy) is defined by

T (a, b; Dxy) =
∞∑

n=0

(a; q)n(bDxy)n

(q; q)n
. (3.3)

Theorem 5. It is asserted that

T (a, b; Dxy)
{

(yt; q)∞
(xt; q)∞

}
=

(abt, yt; q)∞
(bt, xt; q)∞

(|bt| < 1). (3.4)

Proof. We readily see that

T (a, b; Dxy)
{

(yt; q)∞
(xt; q)∞

}
=
∞∑

k=0

(a; q)k

(q; q)k
(bDxy)k

{
(yt; q)∞
(xt; q)∞

}
=

(yt; q)∞
(xt; q)∞

∞∑

k=0

(a; q)k

(q; q)k
(bt)k =

(abt, yt; q)∞
(bt, xt; q)∞

,

which completes the proof of Theorem 5.

Definition 3. In terms of the q-shifted factorial and the Cauchy polynomials pn(x, y) defined
by (1.11), we write

Mn(a, b, x, y|q) =
n∑

k=0

[
n

k

]
(a; q)n−k bn−k pk(x, y). (3.5)

Theorem 6. [Operator Representation for Mn(a, b, x, y|q)]. The following operational formula
holds:

T (a, b; Dxy) {pn(x, y)} = Mn(a, b, x, y|q). (3.6)

Proof. We have

T (a, b; Dxy) {pn(x, y)} =
∞∑

k=0

(a; q)k(bDxy)k

(q; q)k
{pn(x, y)}

=
n∑

k=0

(a; q)k

(q; q)k

(q; q)n

(q; q)n−k
bk pn−k(x, y) = Mn(a, b, x, y|q),

which proves Theorem 6.
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Theorem 7. [Generating Function for Mn(a, b, x, y|q)]. The following generating function holds:
∞∑

n=0

Mn(a, b, x, y|q) tn

(q; q)n
=

(abt, yt; q)∞
(bt, xt; q)∞

(max{|bt|, |xt|} < 1). (3.7)

Proof. We observe that

∞∑
n=0

Mn(a, b, x, y|q) tn

(q; q)n
=

∞∑
n=0

T (a, b;Dxy) {pn(x, y)} tn

(q; q)n
=T (a, b;Dxy)

{ ∞∑
n=0

pn(x, y)
tn

(q; q)n

}

= T (a, b;Dxy)
{

(yt; q)∞
(xt; q)∞

}
=

(abt, yt; q)∞
(bt, xt; q)∞

,

which evidently completes the proof of Theorem 7.

We now derive the identity (3.10) below for the q-exponential operator T (bDq) which will be
used later in order to derive a Rogers-type formula for the q-polynomials Mn(a, b, x, y|q). We first
notice the following identity (see [13]):

Dk
q {(az; q)∞} = (−1)kq(

k
2) (azqk; q)∞ zk.

In this connection, we recall the following known result (see [16]):

T (bDq)
{

(av; q)∞
(as, at, aw; q)∞

}
=

(av, absw; q)∞
(as, at, aw, bs, bw; q)∞

3Φ2

[
v/t, as, aw;

av, absw;
q, bt

]
(3.8)

(max{|as|, |at|, |aw|, |bs|, |bt|, |bw|} < 1),

which, for w → 0, yields the following identity needed in the proof of Theorem 8 below:

T (bDq)
{

(av; q)∞
(as, at; q)∞

}
=

(av; q)∞
(as, at, bs; q)∞

2Φ1

[
v/t, as;

av;
q, bt

]
(3.9)

(max{|as|, |at|, |bs|, |bt|} < 1).

Theorem 8. The following operational formula holds:

T (dDq)
{

(av, az; q)∞
(at, aw; q)∞

}
=

(av, az; q)∞
(at, aw, dw; q)∞

∞∑

k=0

(−1)k q(
k
2) (at, aw; q)k (dz)k

(az, av; q)k(q; q)k

× 2Φ1

[
v/t, awqk;

avqk;
q, dt

] (3.10)

(max{|dt|, |dw|, |at|, |aw|} < 1).
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Proof. It is easily seen that

T (dDq)
{

(av, az; q)∞
(at, aw; q)∞

}

=
∞∑

n=0

dn

(q; q)n
Dn

q

{
(av, az; q)∞
(at, aw; q)∞

}

=
∞∑

n=0

dn

(q; q)n

n∑

k=0

qk(k−n)

[
n

k

]
Dk

q {(az; q)∞} Dn−k
q

{
(avqk; q)∞

(atqk, awqk; q)∞

}

=
∞∑

n=0

dn

(q; q)n

n∑

k=0

qk(k−n)

[
n

k

]
(−1)kq(

k
2)zk(azqk; q)∞Dn−k

q

{
(avqk; q)∞

(atqk, awqk; q)∞

}

=
∞∑

k=0

∞∑

n=k

dn

(q; q)k(q; q)n−k
qk(k−n)(−1)kq(

k
2)zk(azqk; q)∞Dn−k

q

{
(avqk; q)∞

(atqk, awqk; q)∞

}

=
∞∑

n=0

∞∑

k=0

dn+k

(q; q)n(q; q)k
q−nk(−1)kq(

k
2)zk(azqk; q)∞Dn

q

{
(avqk; q)∞

(atqk, awqk; q)∞

}

= (az; q)∞
∞∑

k=0

(−1)kq(
k
2)(dz)k

(az; q)k(q; q)k

∞∑
n=0

(dq−kDq)n

(q; q)n

{
(avqk; q)∞

(atqk, awqk; q)∞

}

= (az; q)∞
∞∑

k=0

(−1)kq(
k
2)(dz)k

(az; q)k(q; q)k
T (dq−kDq)

{
(avqk; q)∞

(atqk, awqk; q)∞

}

= (az; q)∞
∞∑

k=0

(−1)kq(
k
2)(dz)k

(az; q)k(q; q)k

(avqk; q)∞
(atqk, awqk, dw; q)∞

2Φ1

[
v/t, awqk;

avqk;
q, dt

]

=
(az, av; q)∞

(at, aw, dw; q)∞

∞∑

k=0

(−1)kq(
k
2)(at, aw; q)k (dz)k

(az, av; q)k(q; q)k
2Φ1

[
v/t, awqk;

avqk;
q, dt

]
,

which proves the operational formula (3.10) asserted by Theorem 8.

Theorem 9. [Rogers-Type Formula for Mn(a, b, x, y|q)]. The following Rogers-type formula
holds for the q-polynomials Mn(a, b, x, y|q) :

∞∑
m=0

∞∑
n=0

Mm+n(a, b, x, y|q) sm

(q; q)m

tn

(q; q)n

=
(abs, ys; q)∞

(bs, xs, xt; q)∞

∞∑

k=0

(−1)kq(
k
2) (bs, xs; q)k(yt)k

(abs, ys, q; q)k
2Φ1

[
a, xsqk;

absqk;
q, bt

]
(3.11)

(max{|bs|, |bt|, |xs|, |xt|} < 1).

Proof.∞∑
m=0

∞∑
n=0

Mm+n(a, b, x, y|q) sm

(q; q)m

tn

(q; q)n
=

∞∑
n=0

∞∑
m=n

Mm(a, b, x, y|q) tn

(q; q)n

sm−n

(q; q)m−n

=
∞∑

n=0

∞∑
m=n

Mm(a, b, x, y|q) tn sm−n (q; q)m

(q; q)m(q; q)n(q; q)m−n
=

∞∑
m=0

m∑
n=0

[
m

n

]
tn sm−n Mm(a, b, x, y|q)

(q; q)m

=
∞∑

m=0

rm(s, t)
Mm(a, b, x, y|q)

(q; q)m
=

∞∑
m=0

T (tDq){sm}Mm(a, b, x, y|q)
(q; q)m

(3.12)

=T (tDq)

{ ∞∑
m=0

Mm(a, b, x, y|q) sm

(q; q)m

}
= T (tDq)

{
(abs, ys; q)∞
(bs, xs; q)∞

}
.
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The proof of assertion (3.11) of Theorem 9 will be completed when we evaluate the last expression
in (3.12) by applying the q-identity (3.10) after setting d 7→ t, a 7→ s, v 7→ ab, z 7→ y, t 7→ b, and
w 7→ x in (3.10).

4. THE CAUCHY q-DIFFERENCE OPERATOR L(a, b; θxy)

In this section, we introduce the Cauchy q-difference operator L(a, b; θxy) and use it to define the
new q-polynomials Nn(a, b, x, y|q). We then represent the q-polynomials Nn(a, b, x, y|q) by means
of the Cauchy q-difference operator and thereby derive their generating function. We also apply
an identity involving the q-exponential operator T (bDq) to prove the Rogers-type formula for
Nn(a, b, x, y|q).

Saad and Sukhi [18] introduced another q-difference operator θxy for functions of two variables
as follows.

Definition 4. The q-difference operator θxy is defined by

θxy{f(x, y)} = θxηyDxy{f(x, y)} =
f(q−1x, y)− f(x, qy)

q−1x− y
, (4.1)

where (see [18])

θk
xy {pn(y, x)} = (−1)k (q; q)n

(q; q)n−k
pn−k(y, x) and θk

xy

{
(xt; q)∞
(yt; q)∞

}
= (−t)k (xt; q)∞

(yt; q)∞
. (4.2)

We now define the homogeneous Cauchy q-shift operator as follows.

Definition 5. The homogeneous Cauchy q-shift operator L(a, b; θxy) is defined by

L(a, b; θxy) =
∞∑

n=0

(a; q)n(bθxy)n

(q; q)n
. (4.3)

Theorem 10. The following operational formula holds:

L(a, b; θxy)
{

(xt; q)∞
(yt; q)∞

}
=

(xt,−abt; q)∞
(yt,−bt; q)∞

(|bt| < 1). (4.4)

Proof. We observe that

L(a, b; θxy)
{

(xt; q)∞
(yt; q)∞

}
=

∞∑

k=0

(a; q)k bk

(q; q)k
(θxy)k

{
(xt; q)∞
(yt; q)∞

}

=
(xt; q)∞
(yt; q)∞

∞∑

k=0

(a; q)k bk

(q; q)k
(−t)k =

(xt,−abt; q)∞
(yt,−bt; q)∞

,

which prove the operational formula (4.4) asserted by Theorem 10.

Definition 6. The q-polynomials Nn(a, b, x, y|q) are defined by

Nn(a, b, x, y|q) :=
n∑

k=0

(−1)n−k

[
n

k

]
(a; q)n−k bn−k pk(y, x). (4.5)

Theorem 11. [Operator Representation for Nn(a, b, x, y|q)]. It is asserted that

L(a, b; θxy) {pn(y, x)} = Nn(a, b, x, y|q). (4.6)

Proof. We observe that

L(a, b; θxy) {pn(y, x)} =
∞∑

k=0

(a; q)k bk(θxy)k

(q; q)k
{pn(y, x)} =

n∑

k=0

(−1)k (a; q)k bk

(q; q)k

(q; q)n

(q; q)n−k
pn−k(y, x)

=
n∑

k=0

(−1)k

[
n

k

]
(a; q)k bk pn−k(y, x),

which, upon setting k 7→ n− k, yields the right-hand side of the assertion (4.6) of Theorem 11.
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Theorem 12. [Generating Function for Nn(a, b, x, y|q)]. The following generating function holds
for the q-polynomials for Nn(a, b, x, y|q) :

∞∑
n=0

Nn(a, b, x, y|q) tn

(q; q)n
=

(xt,−abt; q)∞
(yt,−bt; q)∞

(max{|bt|, |yt|} < 1). (4.7)

Proof. It is readily seen that

∞∑
n=0

Nn(a, b, x, y|q) tn

(q; q)n
=

∞∑
n=0

L(a, b; θxy) {pn(y, x)} tn

(q; q)n
=L(a, b; θxy)

{ ∞∑
n=0

pn(y, x)
tn

(q; q)n

}

=L(a, b; θxy)
{

(xt; q)∞
(yt; q)∞

}
=

(xt,−abt; q)∞
(yt,−bt; q)∞

.

Theorem 13. [Rogers-Type Formula for Nn(a, b, x, y|q)]. The following Rogers-type formula
holds for the q-polynomials Nn(a, b, x, y|q) :

∞∑
m=0

∞∑
n=0

Nm+n(a, b, x, y|q) sm

(q; q)m

tn

(q; q)n
=

(xs,−abs; q)∞
(ys,−bs,−bt; q)∞

·
∞∑

k=0

(−1)kq(
k
2) (ys,−bs; q)k(−abt)k

(xs,−abs, q; q)k
2Φ1

[
x/y,−bsqk;

xsqk;
q, yt

] (4.8)

(max{|bs|, |bt|, |ys|, |yt|} < 1).

Proof. We observe that

∞∑
m=0

∞∑
n=0

Nm+n(a, b, x, y|q) sm

(q; q)m

tn

(q; q)n
=

∞∑
n=0

∞∑
m=n

Nm(a, b, x, y|q) tn

(q; q)n

sm−n

(q; q)m−n

=
∞∑

n=0

∞∑
m=n

Nm(a, b, x, y|q) tn sm−n (q; q)m

(q; q)m(q; q)n(q; q)m−n
=

∞∑
m=0

m∑
n=0

[
m

n

]
tn sm−n Nm(a, b, x, y|q)

(q; q)m

=
∞∑

m=0

rm(s, t)
Nm(a, b, x, y|q)

(q; q)m
=

∞∑
m=0

T (tDq){sm}Nm(a, b, x, y|q)
(q; q)m

(4.9)

= T (tDq)

{ ∞∑
m=0

Nm(a, b, x, y|q) sm

(q; q)m

}
= T (tDq)

{
(xs,−abs; q)∞
(ys,−bs; q)∞

}
.

The proof of assertion (4.8) of Theorem 13 will be completed when we evaluate the last expression
in (4.9) by applying the q-identity (3.10) after setting d 7→ t, a 7→ s, v 7→ x, z 7→ −ab, t 7→ y, and
w 7→ −b in (3.10).
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nomials,” J. Adv. Math. 8, 1440–1455 (2014).

18. H. L. Saad and A. A. Sukhi, “Another Homogeneous q-Difference Operator,” Appl. Math. Comput.
215, 4332–4339 (2010).

19. H. L. Saad and A. A. Sukhi, “The q-Exponential Operator,” Appl. Math. Sci. 7, 6369–6380 (2005).

20. H. M. Srivastava and A. K. Agarwal, “Generating Functions for a Class of q-Polynomials,” Ann. Mat.
Pura Appl. (Ser. 4) 154, 99–109 (1989).

21. H. M. Srivastava and V. K. Jain, “Some Multilinear Generating Functions for q-Hermite Polynomials,”
J. Math. Anal. Appl. 144, 147–157 (1989).

22. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series (Halsted Press, Ellis
Horwood Limited, Chichester, John Wiley and Sons, New York, Chichester, Brisbane and Toronto,
1985).

23. H. M. Srivastava, “Some Generalizations and Basic (or q-) Extensions of the Bernoulli, Euler and
Genocchi Polynomials,” Appl. Math. Inform. Sci. 5, 390–444 (2011).

24. H. M. Srivastava, S. N. Singh, S. P. Singh, and V. Yadav, “Some Conjugate WP-Bailey Pairs and
Transformation Formulas for q-Series,” Creat. Math. Inform. 24, 199–209 (2015).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 23 No. 1 2016


