PROCEEDINGS OF INTERNATIONAL MATHEMATICAL SCIENCES URL: https://dergipark.org.tr/tr/pub/pims Volume I Issue 2 (2019), Pages 51-55.

PITCHFORK DOMINATION AND IT'S INVERSE FOR CORONA AND JOIN OPERATIONS IN GRAPHS

MOHAMMED A. ABDLHUSEIN*, AND MANAL N. AL-HARERE**

*DEPARTMENT OF MATHEMATICS, COLLEGE OF EDUCATION FOR PURE SCIENCES (IBN AL-HAITHAM), BAGHDAD UNIVERSITY, BAGHDAD, IRAQ, PHONE: 009647808271658

**DEPARTMENT OF APPLIED SCIENCES, UNIVERSITY OF TECHNOLOGY, BAGHDAD, IRAQ, PHONE: 009647703913468

ABSTRACT. Let G be a finite simple and undirected graph without isolated vertices. A subset D of V is a pitchfork dominating set if every vertex $v \in D$ dominates at least j and at most k vertices of V - D, where j and k are non-negative integers .The domination number of G, denoted by $\gamma_{pf}(G)$ is a minimum cardinality over all pitchfork dominating sets in G. A subset D^{-1} of V - D is an inverse pitchfork dominating set if D^{-1} is a pitchfork dominating set. The inverse domination number of G, denoted by $\gamma_{pf}^{-1}(G)$ is a minimum cardinality over all number of G, denoted by $\gamma_{pf}^{-1}(G)$ is a minimum cardinality over all inverse pitchfork dominating sets in G. In this paper, the pitchfork domination and the inverse pitchfork domination are determined when j = 1 and k = 2 for some graphs that obtained from graph operations corona and join.

1. INTRODUCTION

Let G = (V, E) be a graph without isolated vertices with vertex set V of order n and edge set E of size m. The complement \overline{G} of a simple graph G with vertex set V(G) is the graph in which two vertices are adjacent if and only if they are not adjacent in G. The join $G_1 + G_2$ between two graphs G_1 and G_2 is a graph contains all edges and vertices of both graphs and every vertex of G_1 joined by edges with all vertices of G_2 . The corona $G_1 \odot G_2$ between two graphs G_1 and G_2 is a graph has one copy of G_1 and $|V(G_1)|$ copies of G_2 such that the i^{th} vertex of G_1 joined by edges with all vertices of the i^{th} copy of G_2 . For graph theoretic terminology we refer to [6] and [10]. For a detailed survey of domination one can see [7] and [8]. A set $D \subseteq V$ is a dominating set if every vertex in V - D is adjacent to a vertex in D. If no proper subset of D is a dominating set then D is said to be minimal . The domination number $\gamma(G)$ is the minimum cardinality of a dominating set D of G. There are many papers deals with different types of domination, such as [3, 4, 5, 9].

²⁰¹⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. pitchfork domination; inverse pitchfork domination; corona operation. ©2019 Proceedings of International Mathematical Sciences.

Here, a new model of domination in graphs called the pitchfork domination and it's inverse, which were studied in [1, 2], are applied on some graphs formed by using two types of operations.

Theorem 1.1. [2] The cycle graph C_n with $n \ge 3$ has an inverse pitchfork domination such that: $\gamma_{pf}^{-1}(C_n) = \gamma_{pf}(C_n) = \lceil \frac{n}{3} \rceil$.

Proposition 1.2. [1] Let $G = K_n$ the complete graph with $n \ge 3$, then $\gamma_{pf}(K_n) = n-2$.

Proposition 1.3. [2] The complete graph K_n has an inverse pitchfork domination if and only if n = 3, 4 and $\gamma_{pf}^{-1}(K_n) = n - 2$.

Theorem 1.4. [1] Let G be the complete bipartite graph, then:

$$\gamma_{pf}(K_{n,m}) = \begin{cases} m, & \text{if } n = 2 \land m < 3 & \text{or } n = 1 \land m > 2\\ m - 1, & \text{if } n = 2, m \ge 3\\ n + m - 4, & \text{if } n, m > 2. \end{cases}$$

Theorem 1.5. [2] The complete bipartite graph $K_{n,m}$ has an inverse pitchfork domination if and only if $K_{n,m} \equiv K_{1,2}, K_{2,2}, K_{2,3}, K_{2,4}, K_{3,3}, K_{3,4}$ or $K_{4,4}$ such that:

$$\gamma_{pf}^{-1}(K_{n,m}) = \begin{cases} 2 & \text{for } K_{1,2} \\ n+m-4 & \text{if } n, m = 2, 3, 4 \end{cases}$$

Proposition 1.6. [1] For any graph G having a pitchfork domination set, if G has a support vertex, that is adjacent to more than two pendents then all it's pendents belong to the pitchfork dominating set.

Note 1.7. [2] If $\gamma_{pf}(G) > \frac{n}{2}$ then G has no inverse pitchfork domination.

Proposition 1.8. [2] Let G be a graph which has a support vertex adjacent to more than two pendent vertices, then G has no inverse pitchfork domination.

2. The Main Results

The pitchfork domination and the inverse pitchfork domination are studied here for some graphs constructed by corona or join operations.

Theorem 2.1. If G is a graph of order n, then: 1- $\gamma_{pf}(G \odot K_2) = \gamma_{pf}(\overline{G} \odot K_2) = \gamma_{pf}(G \odot \overline{K}_2) = \gamma_{pf}(\overline{G} \odot \overline{K}_2) = n.$ 2- $\gamma_{pf}(G + K_2) = \gamma_{pf}(\overline{G} + K_2) = \gamma_{pf}(G + \overline{K}_2) = \gamma_{pf}(\overline{G} + \overline{K}_2) = n.$ 3- $\gamma_{pf}(G \odot \overline{K}_1) = \gamma_{pf}(\overline{G} \odot \overline{K}_1) = n.$

Proof. Let $D \subseteq V$. 1 and 2: Since every $v \in G$ is adjacent to two vertices of K_2 or \overline{K}_2 , then $v \in D$. Therefore, every $v \in D$ dominates exactly two vertices. Thus, D is γ_{pf} -set and D = V(G) with order n. Others cases are proved by the same way. 3: Since every support vertex or it's leaf belongs to D, then D = V(G) is a γ_{pf} -set.

Theorem 2.2. If G is a graph of order n, then: $1 - \gamma_{pf}^{-1}(G \odot K_2) = \gamma_{pf}^{-1}(\overline{G} \odot K_2) = n.$ $2 - \gamma_{pf}^{-1}(G \odot \overline{K}_2) = \gamma_{pf}^{-1}(\overline{G} \odot \overline{K}_2) = 2n.$ $3 - \gamma_{pf}^{-1}(G \odot \overline{K}_1) = \gamma_{pf}^{-1}(\overline{G} \odot \overline{K}_1) = n.$

52

Proof. Let $D \subseteq V$. 1- There are *n* cycles of order three and $\gamma_{pf}^{-1}(C_3) = 1$ according to Theorem 1.1. The result is obtained.

2- Every vertex of G or \overline{G} is a support vertex and is adjacent to two (non-adjacent) vertices of $\overline{K_2}$. So that, D contains all vertices of G or \overline{G} according to Theorem 2.1 part 1. Therefore, $D^{-1} = V - D$ which has all vertices of the copies of $\overline{K_2}$. Hence, $\gamma_{pf}^{-1} = 2n$.

3- Similar to proof in Theorem 2.1 case 3.

Theorem 2.3. $G + K_2$, $\overline{G} + K_2$, $G + \overline{K}_2$ and $\overline{G} + \overline{K}_2$, have an inverse pitchfork domination if and only if $n \leq 2$ such that: $1 - \gamma^{-1}(G + K_2) = \gamma^{-1}(\overline{G} + K_2) = n$

1- $\gamma_{pf}^{-1}(G + K_2) = \gamma_{pf}^{-1}(\overline{G} + \overline{K}_2) = n.$ 2- $\gamma_{pf}^{-1}(G + \overline{K}_2) = \gamma_{pf}^{-1}(\overline{G} + \overline{K}_2) = 2.$

Proof. 1- If n = 1 then $G + K_2 = \overline{G} + K_2 = C_3$ which has $\gamma_{pf}^{-1}(C_3) = 1$ by Theorem 1.1. If n = 2 then D = V(G) by Theorem 2.1. So, $D^{-1} = V(K_2)$ which is a γ_{pf}^{-1} -set of order 2.

2- Since every $v \in G$ or \overline{G} is adjacent to two vertices of \overline{K}_2 and $v \in D$ from Theorem 2.1, then we have $D^{-1} = V(\overline{K}_2)$. Hence, D^{-1} dominates all vertices of the graph and it is an inverse pitchfork dominating set. Every $w \in D^{-1}$ dominates exactly two vertices of G or \overline{G} . Therefore, D^{-1} is a γ_{pf}^{-1} -set of order 2. Now, If $n \geq 3$ then the graph has no inverse pitchfork domination by Note 1.7 since $\gamma_{pf} > \frac{n+2}{2}$. \Box

Theorem 2.4. For K_m with $m \ge 3$ and G of order n, we have: 1- $\gamma_{pf}(G \odot K_m) = \gamma_{pf}(\overline{G} \odot K_m) = n(m-1).$ 2- $\gamma_{pf}(G \odot \overline{K}_m) = \gamma_{pf}(\overline{G} \odot \overline{K}_m) = nm.$

Proof. 1- $\gamma_{pf}(K_m) = m - 2$ by Proposition 1.2 then there are two vertices in every copy of K_m which are not in D. But all the vertices from every copy of K_m which are adjacent to one vertex of G. Then we must add to D one vertex from every copy of K_m . Hence, D is a pitchfork dominating set that contains m - 1 vertices from every copy of K_m . Since, every vertex of D dominates exactly two vertices, therefore D is a γ_{pf} -set with order n(m-1).

2- Since every vertex of G becomes a support vertex and it is adjacent to $m \geq 3$ leaves of \overline{K}_m , then by Proposition 1.6, D consists of only the end vertices which are all vertices of n copies of K_m . Hence, $\gamma_{pf}(G \odot \overline{K}_m) = nm$.

Theorem 2.5. For K_m with $m \ge 3$ and G of order n, then: 1. $G \odot K_m$ and $\overline{G} \odot K_m$ has an inverse pitchfork domination if and only if m = 3, 4such that $\gamma_{pf}^{-1}(G \odot K_m) = \gamma_{pf}^{-1}(\overline{G} \odot K_m) = n(m-1)$. 2. $G \odot \overline{K}_m$ and $\overline{G} \odot \overline{K}_m$ has no inverse pitchfork domination.

Proof. 1- K_{m+1} has an inverse pitchfork domination if and only if m + 1 = 3, 4where $\gamma_{pf}^{-1}(K_{m+1}) = m - 1$ according to Proposition 1.3. Therefore, $\gamma_{pf}^{-1}(G \odot K_m) =$

 $\gamma_{pf}^{-1}(\overline{G} \odot K_m) = n(m-1).$

2- Since D contains all vertices of the copies of \overline{K}_m by Theorem 2.4. And for all $v \in G$ or \overline{G} , then v is a support vertex that joins with more than two pendents. Then $v \notin D^{-1}$ and there is no γ_{pf}^{-1} -set according to Proposition 1.8.

Theorem 2.6. For any graph G of order n and complete graph K_m with $m \ge 3$, we have:

1. $\gamma_{pf}(G + K_m) = \gamma_{pf}(\overline{G} + K_m) = |V(G)| + \gamma_{pf}(K_m) = n + m - 2.$ 2. $G + K_m$ and $\overline{G} + K_m$ has an inverse pitchfork domination if and only if n = 1and m = 3 such that $\gamma_{pf}^{-1}(G + K_m) = \gamma_{pf}^{-1}(\overline{G} + K_m) = 2.$

Proof. 1- Since $\gamma_{pf}(K_m) = m - 2$ by Proposition 1.2 and since every vertex in G is adjacent with all vertices of K_m , then all vertices of G must belong to the dominating set D. Hence $\gamma_{pf}(G + K_m) = n + m - 2$. 2- It is clear from Proposition1.3.

Observation 2.7. Let G be a disconnected graph with H_1, H_2, \dots, H_n components, then:

1- $\gamma_{pf}(G) = \sum_{i=1}^{n} \gamma_{pf}(H_i).$ 2- $\gamma_{pf}^{-1}(G) = \sum_{i=1}^{n} \gamma_{pf}^{-1}(H_i).$

Theorem 2.8. For a connected graph G_1 of order $n \ge 2$ and a null graph G_2 of order $m \ge 2$, we have:

$$n + m - 3 \le \gamma_{pf}(G_1 + G_2) \le n + m - 2$$

Proof. Let $v_1, v_2 \in V - D$ where $v_1 \in G_1$ and $v_2 \in G_2$. Then any vertex of G_1 which is adjacent to v_1 will dominates v_1 and v_2 . Any vertex of G_1 which is not adjacent to v_1 will dominates only v_2 . While all vertices of G_2 unless v_2 will dominates only v_1 . Therefore, V - D can not take another vertex of G_2 . But V - D can contain another vertex from G_1 say u (by condition: G_1 is not a complete graph and there is no vertex in G_1 adjacent with both v_1 and u). Hence $\gamma_{pf}(G_1+G_2) = n+m-3$ when the condition hold. But if the condition doesn't hold, then $\gamma_{pf}(G_1+G_2) = n+m-2$. Therefore, in general $n + m - 3 \leq \gamma_{pf}(G_1 + G_2) \leq n + m - 2$.

Theorem 2.9. For any two connected graphs G_1 of order $n \ge 2$ with $\gamma_{pf}(G_1)$ and G_2 of order $m \ge 2$ with $\gamma_{pf}(G_2)$, then:

1. $\gamma_{pf}(G_1 + G_2) \ge \gamma_{pf}(G_1) + \gamma_{pf}(G_2)$ and $\gamma_{pf}(G_1 + G_2) = n + m - 2$.

2. $G_1 + G_2$ has an inverse pitchfork domination if and only if n = m = 2 such that $\gamma_{nf}^{-1}(G_1 + G_2) = n + m - 2$.

Proof. 1- Let V - D consists of two vertices one vertex from G_1 (say v_1) and one from G_2 (say v_2). Since G_1 is a connected graph then for any vertex $u_1 \in G_1$ which is adjacent to v_1 , then u_1 dominates v_1 and v_2 . Also, since G_2 is a connected graph then for any vertex $u_2 \in G_2$ which is adjacent to v_2 , it will dominate v_1 and v_2 . The other vertices of G_1 dominate only v_2 and the other vertices of G_2 dominate only v_1 . Therefor, all vertices except v_1 and v_2 belong to D which is a γ_{pf} -set.

2- The proof is clear when n = m = 2. If $n + m \ge 5$ then there is no inverse pitchfork domination according to Note 1.7 since $\gamma_{pf}(G_1 + G_2) > \frac{n+m}{2}$.

Theorem 2.10. Let G_1 and G_2 be two null graphs of order n and m respectively, then:

1- $\gamma_{pf}(G_1 + G_2) = \gamma_{pf}(K_{n,m}).$

2- $G_1 + G_2$ has an inverse pitchfork domination if and only if n = 1 and m = 2 or n, m = 2, 3, 4 such that $\gamma_{pf}^{-1}(G_1 + G_2) = \gamma_{pf}^{-1}(K_{n,m})$.

Proof. Since the bipartite graph formed by joining any two null graphs, then the pitchfork domination and it's inverse given according to Theorem 1.4 and Theorem 1.5. $\hfill \Box$

Theorem 2.11. For any two graphs G_1 and G_2 , of order n and m respectively (n, m > 2), then:

$$n + m - 4 \le \gamma_{pf}(G_1 + G_2) \le n + m - 2$$

Proof. To prove the lower bound, suppose that G_1 and G_2 are two null graphs having as few edges as possible. Then $\gamma_{pf}(G_1 + G_2) = \gamma_{pf}(K_{n,m}) = n + m - 4$ by Theorem 1.4 and Theorem 2.10. Also, to prove the upper bound, suppose that G_1 and G_2 are two complete graphs. Then $\gamma_{pf}(G_1 + G_2) = \gamma_{pf}(K_{n+m}) = n + m - 2$ by Proposition 1.2.

3. CONCLUSION

The pitchfork domination and the inverse pitchfork domination are determined when j = 1 and k = 2 for some graphs that obtained from two types of operations: corona operation and join operation.

Acknowledgments. We thank Maltepe University for the good organization of the Third International Conference of Mathematical Sciences (ICMS 2019).

References

- [1] M. A. Abdlhusein and M. N. Al-harere, Pitchfork Domination in Graphs, (2019) reprint.
- [2] M. A. Abdlhusein and M. N. Al-harere, *Inverse Pitchfork Domination in Graphs*, (2019) reprint.
- [3] M. N. Al-harere and A. T. Breesam, Further Results on Bi-domination in Graphs, AIP Conference Proceedings 2096 (2019) 020013-020013-9p.
- [4] M. N. Al-harere and P. A. Khuda Bakhash, Tadpole Domination in Graphs, Baghdad Science Journal 15 (2018) 466-471.
- [5] M. Chellali, T. W. Haynes, S. T. Hedetniemi, and A. M. Rae, [1,2]-Set in graphs, Discrete Applied Mathematic, 161 (2013) 2885- 2893.
- [6] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, (1969).
- [7] T. W. Haynes, S. T. Hedetniemi and P.J. Slater, Domination in Graphs -Advanced Topics, Marcel Dekker Inc., (1998).
- [8] S.T. Hedetneimi and R. Laskar, Topics in domination in graphs, Discrete Math. 86 (1990).
- [9] A. A. Omran and Y. Rajihy, Some Properties of Frame Domination in Graphs, Journal of Engineering and Applied Sciences, 12 (2017) 8882-8885.
- [10] Ore O. Theory of Graphs, American Mathematical Society, Provedence, R.I. (1962).

Mohammed A. Abdlhusein,

Department of Mathematics, College of Education for Pure Sciences (Ibn Al-Haitham), Baghdad University, Baghdad, Iraq, phone: 009647808271658

Email address: Mmhd@utq.edu.iq

MANAL N. AL-HARERE,

DEPARTMENT OF APPLIED SCIENCES, UNIVERSITY OF TECHNOLOGY, BAGHDAD, IRAQ, PHONE: 009647703913468

Email address: 100035@uotechnology.edu.iq